Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

نویسندگان

  • Minhao Yan
  • Li Qu
  • Jiangxia Fan
  • Yong Ren
چکیده

We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A 'destabilization state' with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, 'long-lived stable clusters state' (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field (B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can 'paste' these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size distribution of superparamagnetic particles determined by magnetic sedimentation.

We report on the use of magnetic sedimentation as a means to determine the size distribution of dispersed magnetic particles. The particles investigated here are (i) single anionic and cationic nanoparticles of diameter D approximately 7 nm and (ii) nanoparticle clusters resulting from electrostatic complexation with polyelectrolytes and polyelectrolyte-neutral copolymers. A theoretical express...

متن کامل

Synthesis and Characterization of Fe3O4 Magnetic Nanoparticles Coated with Carboxymethyl Chitosan Grafted Sodium Methacrylate

N-sodium acrylate-O-carboxymethyl chitosan [CMCH-g-PAA(Na)] bound Fe3O4 nanoparticles were developed as a novel magnetic nanoparticles with an ionic structure that can be potentially used in many fields. CMCH-g-PAA (Na) was obtained by grafting of sodium polyacrylate on O-carboxymethyl chitosan, which is an amphiphilic polyelectrolyte with the biocompatibility and biodegra...

متن کامل

Fe3O4–Au and Fe2O3–Au Hybrid Nanorods: Layer-by-Layer Assembly Synthesis and Their Magnetic and Optical Properties

A layer-by-layer technique has been developed to synthesize FeOOH-Au hybrid nanorods that can be transformed into Fe(2)O(3)-Au and Fe(3)O(4)-Au hybrid nanorods via controllable annealing process. The homogenous deposition of Au nanoparticles onto the surface of FeOOH nanorods can be attributed to the strong electrostatic attraction between metal ions and polyelectrolyte-modified FeOOH nanorods....

متن کامل

Assessment of DNA complexation onto polyelectrolyte-coated magnetic silica nanoparticles.

The polyelectrolyte-DNA complexation method to form magnetoplexes using silica-coated iron oxide magnetic nanoparticles as inorganic substrates is an attractive and promising process in view of the potential applications including magnetofection, DNA extraction and purification, and directed assembly of nanostructures. Herein, we present a systematic physico-chemical study that provides clear e...

متن کامل

Simple and Rapid Immobilization of Firefly Luciferase on Functionalized Magnetic Nanoparticles; a Try to Improve Kinetic Properties and Stability

We expressed and purified a recombinant P. pyralis luciferase with N-terminal His-tags. The silanized Ni or Cu-loaded magnetic particles were prepared and used to assemble the His-tagged P. pyralis luciferase. This enzyme immobilized on functionalized magnetic nanoparticles (MNPs) via electrostatic interactions of His-tag with Ni2+/Cu2+ ions on the surface of MNPs using si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014